Ormiston Meadows Academy Calculation Policy

Addition			
	Concrete	Pictorial	Abstract
Combinin g two parts to make whole: part- whole model	Use part part-whole model. Use cubes to add two numbers together as a group.	Use pictures to add two numbers together as a group or in a bar.	Use the part part-whole diagram.
Starting at the bigger number and counting on, including adding a 2-digit	Start with the larger number on the bead string and then count on to the smaller number.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the small number to find your answer.

Ormiston Meadows Academy Calculation Policy

number and ones	Counting on using number lines by using cubes or numicon		
Represen t and use number bonds and us related subtractio n facts within 20	Some children may need to initially use real objects before moving onto the representations		Part-whole model to be used alongside abstract.
Regroupi ng to make 10 This is an essential skill for column addition later on	Start with the bigger number and use the smaller number to make 10. Use ten frames. $6+5=$	Use pictures or a number line. Regroup or partition the smaller number using the part part-whole model to make 10. $9+5=14$ 14	Part-whole model to be used alongside abstract.
Add a 2 digit	Explore that the ones digit does not change.	Dienes may be used, as well as a number line.	Focusing on the place value column, children add that amount of tens.

number and tens	$25+10=35$		Children should be able to mentally add a ten to a number.
Add two 2 digit numbers	Model using dienes and place value counters. Arararan an an	Use a number line and bridge ten using partwhole if necessary.	Partition the number into columns to support the place value in preparation for formal written methods. Children should be able to mentally add each part in their head. $\begin{array}{r} 47+35 \\ 40+7 \\ 30+5 \\ \hline 70+12 \end{array}$
Add three 1 digit numbers	Combine to make 10 first if possible, or if possible then add third digit.	Regroup and draw representations.	Combine the two numbers that make/ bridge ten, then add on the third. $\begin{aligned} (4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$

Column addition, formal method no exchangi ng	Model using dienes or place value counters. $24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	Children move onto drawing the counters.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$
Column addition, formal method exchangi ng	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10.	Children can draw a pictorial representations of the columns and place value counts to further support their learning and understanding.	$\begin{array}{r} 223 \\ +114 \\ 337 \end{array}$

exchanging the 10 counters from one column for the next place value column until every column has been added.

Fluency variations, different ways to ask the children to solve 21 + 34

		Sam saved £21 one week and $£ 34$ another. How much did he save in total? $21+34=55$. Prove it! (reasoning but the children need to be fluent in representing this)	21 $+34$ \qquad $21+34$ = $=21+34$ What's the sum of twenty one and thirty four?	Always use problems	
Subtraction					
	Concrete	Pictorial		Abstract	
Taking away ones Subtract one-digit and twodigit numbers to 20, including 0	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out objects to show what has been taken away.			

Counting back, including subtractin g a onedigit number from a two-digit number	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards. ones. $13-4$ Use counters and move them away from the group as you take them away counting backwards as you go.	Count back in ones using a number line.	Put 12 in your head, count back 3. What number are you at? Use your fingers to help.
Find the difference	Using cubes or numicon. ?	Draw bars to find the different between 2 numbers. Children to draw cubes/ objects they have used.	

Represen t and use number bonds and related facts within 20 Part part- whole model	Link to addition. Use the part part-whole model for the inverse.	Use a pictorial representation of objects to show the part part-whole model.	Move to using numbers within the part part-whole model.
Make 10	Make the number on the ten frame. $14-9$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	$13-7$ Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether.	$18-6$ How many do we take off to read the next 10? How many do we have left to take off?
Subtract a 2 digit	Explore that the ones digit does not change.	Dienes may be used, as well as a number line.	Focusing on the place value column, children subtract that amount of tens.

Ormiston Meadows Academy Calculation Policy

number and tens			Children should be able to mentally subtract a ten from a two-digit number.
Subtract two 2 digit numbers, no exchange	Model using dienes and place value counters.	Use a number line and bridge ten using partwhole if necessary.	Partition the number into columns to support the place value in preparation for formal written methods. Children should be able to subtract 2 two-digit numbers mentally.
Column subtractio n, formal method - no exchangi ng	Use dienes to make the bigger number and then take the smaller number away. Show how you partition numbers to subtract.	Draw the dienes or place value counters alongside the written calculation to help to show working.	

Column subtractio n, formal method exchangi ng	Use dienes to start with before moving onto place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Start with the ones, can I take away 8 from easily? I need to exchange and replace one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange and replace one hundred for ten tens.	When confidence, children can find their own way to record the exchange.	Children can start the formal written method. $\begin{array}{cc} 728 & -582=146 \\ n & 1 \\ { }^{\prime \prime} 7 & 2 \\ 5 & 8 \\ 5 & 2 \\ \hline 1 & 4 \end{array}$

Ormiston Meadows Academy Calculation Policy

Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. $2,4,6,8,10$ $5,10,15,20,25$
Repeated addition	Use difference objects to add equal groups.	Use pictorial representations, including a number line.	Write addition sentences to describe objects and pictures.

Arrays showing multiplicat ion is commutat ive	Create arrays using counters, cubes and numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using known facts for multiplyin g multiples of 10,100 and 1000.	$\begin{aligned} & 5=1 \times 5 \\ & 50=10 \times 5 \\ & 500=100 \times 5 \\ & 5000=1000 \times 5 \end{aligned}$		

Ormiston Meadows Academy Calculation Policy

Short column multiplicat ion	\odot \odot \bullet Fill each row with 126. Add up each column, starting with the ones making any exchanges needed. Then you have your answer.		Children to record what it is they aredoing to show understanding.$3 \times 23$$3 \times 20=60$ $3 \times 3=9$ 20 $20+9=69$23 $\times \quad 3$
Long column multiplicat ion			Start with long multiplication, reminding the children about lining up their numbers clearly in columns.

Ormiston Meadows Academy Calculation Policy

			$\begin{array}{r} 32 \\ \times 24 \\ \hline 88 \\ 120 \\ 40 \\ 600 \\ \hline 768 \end{array}$	
Fluency variation, different ways to ask children to solve23 x 6				

Ormiston Meadows Academy Calculation Policy

subtractio n	 $96 \div 3=32$	
Division with arrays including fact families and inverse	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \operatorname{Eg} 15+3=5 & 5 \times 3=15 \\ 15+5=3 & 3 \times 5=15 \end{array}$	 Draw an array and use lines to split the array into group to make multiplication and division sentences.

Ormiston Meadows Academy Calculation Policy

Ormiston Meadows Academy Calculation Policy

Long division	1. Divide. Two goes into 5 two times, or 5 tens $+2=2$ whole tens - but there is a remainderl	2. Multiply \& subtract. $\begin{gathered} 10 \\ 2 \longdiv { 2 8 } \\ \hline \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	3. Drop down the next digit. $\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \frac{41}{18} \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.
	1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -44 \\ \hline 18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29

Fluency variation, different ways to ask children to solve 615 $\div 5$:

Ormiston Meadows Academy Calculation Policy

